The Role of DPO-1 and XE991-Sensitive Potassium Channels in Perivascular Adipose Tissue-Mediated Regulation of Vascular Tone
نویسندگان
چکیده
The anti-contractile effect of perivascular adipose tissue (PVAT) is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated KV (KCNQ) channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular KV channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca(2+) activated BKCa channels and/or voltage-dependent KV1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1). In this study, we tested whether KV1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding KV1.5 and BKCa channels, in helping to identify the nature of K(+) channels that could contribute to PVAT-mediated relaxation. XE991 at 30 μM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE) in the absence of PVAT. Similar effects were observed for XE991 at 0.3 μM, which is known to almost completely inhibit mesenteric artery VSMC KV currents. 30 μM XE991 did not affect BKCa currents in VSMCs. Kcna5 (-/-) arteries and wild-type arteries incubated with 1 μM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. KV current density and inhibition by 30 μM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5 (-/-) mice. We conclude that KV channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive KV1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other KV channels in the phenomenon.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملDifferential Effects of Cystathionine-γ-lyase–Dependent Vasodilatory H2S in Periadventitial Vasoregulation of Rat and Mouse Aortas
BACKGROUND Hydrogen sulfide (H(2)S) is a potent vasodilator. However, the complex mechanisms of vasoregulation by H(2)S are not fully understood. We tested the hypotheses that (1) H(2)S exerts vasodilatory effects by opening KCNQ-type voltage-dependent (K(v)) K(+) channels and (2) that H(2)S-producing cystathionine-γ-lyase (CSE) in perivascular adipose tissue plays a major role in this pathway....
متن کاملPerivascular adipose tissue, potassium channels, and vascular dysfunction.
Perivascular adipose tissue has been recognized unequivocally as a major player in the pathology of metabolic and cardiovascular diseases. Through its production of adipokines and the release of other thus far unidentified factors, this recently discovered adipose tissue modulates vascular regulation and the myogenic response. After the discovery of its ability to diminish the vessel's response...
متن کاملRegulation of Vascular Smooth Muscle Tone by Adipose-Derived Contracting Factor
Obesity and arterial hypertension, important risk factors for atherosclerosis and coronary artery disease, are characterized by an increase in vascular tone. While obesity is known to augment vasoconstrictor prostanoid activity in endothelial cells, less is known about factors released from fat tissue surrounding arteries (perivascular adipose). Using lean controls and mice with either monogeni...
متن کاملKCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle.
Potassium channels are central to the regulation of pulmonary vascular tone. The smooth muscle cells of pulmonary artery display a background K(+) conductance with biophysical properties resembling those of KCNQ (K(V)7) potassium channels. Therefore, we investigated the expression and functional role of KCNQ channels in pulmonary artery. The effects of selective KCNQ channel modulators were inv...
متن کامل